Electromagnetic Research Gets New Tools
To study the impacts of electromagnetic signals on the human body, students and researchers simulate interactions between electronic technologies and realistic, high-fidelity models of the human body, known as "meshes." The meshes consist of digitized representations of living, and possibly even moving, tissues, including the body's inner organs, bones and other tissues.
To support studies of the impacts of electromagnetic waves on the human body, NEVA Electromagnetics, LLC produces meshes and various computational tools, including a new tool compatible with MATLABÒ — a high-level programming language for numerical computation and visualization; it is commonly available at academic institutions.
NEVA's tools have numerous applications. They can be used to help simulate electrostatic and quasi-electrostatic simulations, to model human body capacitance (ability to store electrical charges), capacitive touchpads and touchscreens, human exposure to electric fields and trans-cranial stimulation with electrodes or pulsing coils. In addition, electrodynamic simulations can be used to model antenna radiation close to the body, radio-frequency sensors and body-area sensor networks.
Lily Whiteman, National Science Foundation